Evaluation of nano-magnetic fluid on malignant glioma cells
نویسندگان
چکیده
The temperature variation rule of nano-magnetic fluid in the specific magnetic field and the effect on the treatment of malignant glioma were examined. The temperature variation of nano-magnetic fluid in the specific magnetic field was investigated by heating in vitro, and cell morphology was observed through optical microscopy and electron microscopy. MTT detection also was used to detect the effect of Fe3O4 nanometer magnetic fluid hyperthermia (MFH) on the proliferation of human U251 glioma cell line. The Fe3O4 nano MFH experiment was used to detect the inhibition rate of the tumor volume in nude mice with tumors. The results of the experiment showed that the heating ability of magnetic fluid was positively correlated with its concentration at the same intensity of the magnetic field. The results also indicated the prominent inhibitory effect of nanometer MFH on the proliferation of glioma cells, which was a dose-dependent relationship with nanometer magnetic fluid concentration. The hyperthermia experiment of nude mice with tumors displayed a significant inhibiting effect of Fe3O4 nanometer magnetic fluid in glioma volume. These results explain that iron (II, III) oxide (Fe3O4) nanometer MFH can inhibit the proliferation of U251 glioma cells, and has an obvious inhibitory effect on glioma volume, which plays a certain role in the treatment of brain glioma.
منابع مشابه
O24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma
TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...
متن کاملEvaluation of combination effects of 2- methoxyestradiol and methoxyamine on IUdRinduced radiosensitization in glioma spheroids
Background: Glioblastoma is the most common and most malignant cancer of central nervous system. Targeted radiotherapy is an effective method toward its treatment. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue known to be effective as a radiosensitizer in human cancer therapy. In this study we have evaluated the combination effects of 2-Methoxyestradiol, an inhibitor of ...
متن کاملمقایسه روش پرتو درمانی هدفمند با به کارگیری دیاکسی یوریدین نشان دار شده با ید ـ 125 با روش پرتو درمانی خارجی، در درمان گلیوما در شرایط
Gliomas comprise about 50% of all primary central nervous system tumors that have defied treatment. Despite of improvement in treatment with surgery, radiotherapy and chemotherapy, the prognosis for these patients remains poor. Efforts to improve the treatment of malignant glioma have included Targeted Radiotherapy with [125I]-Iododeoxyuridine. 125IUdR, a thymidine analogue, is preferen...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملcAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کامل